Logo Search packages:      
Sourcecode: x264 version File versions  Download package

pixel.c

/*****************************************************************************
 * pixel.c: pixel metrics
 *****************************************************************************
 * Copyright (C) 2003-2010 x264 project
 *
 * Authors: Loren Merritt <lorenm@u.washington.edu>
 *          Laurent Aimar <fenrir@via.ecp.fr>
 *          Jason Garrett-Glaser <darkshikari@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
 *
 * This program is also available under a commercial proprietary license.
 * For more information, contact us at licensing@x264.com.
 *****************************************************************************/

#include "common.h"

#if HAVE_MMX
#   include "x86/pixel.h"
#endif
#if ARCH_PPC
#   include "ppc/pixel.h"
#endif
#if ARCH_ARM
#   include "arm/pixel.h"
#endif
#if ARCH_UltraSparc
#   include "sparc/pixel.h"
#endif


/****************************************************************************
 * pixel_sad_WxH
 ****************************************************************************/
#define PIXEL_SAD_C( name, lx, ly ) \
static int name( pixel *pix1, int i_stride_pix1,  \
                 pixel *pix2, int i_stride_pix2 ) \
{                                                   \
    int i_sum = 0;                                  \
    for( int y = 0; y < ly; y++ )                   \
    {                                               \
        for( int x = 0; x < lx; x++ )               \
        {                                           \
            i_sum += abs( pix1[x] - pix2[x] );      \
        }                                           \
        pix1 += i_stride_pix1;                      \
        pix2 += i_stride_pix2;                      \
    }                                               \
    return i_sum;                                   \
}


PIXEL_SAD_C( x264_pixel_sad_16x16, 16, 16 )
PIXEL_SAD_C( x264_pixel_sad_16x8,  16,  8 )
PIXEL_SAD_C( x264_pixel_sad_8x16,   8, 16 )
PIXEL_SAD_C( x264_pixel_sad_8x8,    8,  8 )
PIXEL_SAD_C( x264_pixel_sad_8x4,    8,  4 )
PIXEL_SAD_C( x264_pixel_sad_4x8,    4,  8 )
PIXEL_SAD_C( x264_pixel_sad_4x4,    4,  4 )


/****************************************************************************
 * pixel_ssd_WxH
 ****************************************************************************/
#define PIXEL_SSD_C( name, lx, ly ) \
static int name( pixel *pix1, int i_stride_pix1,  \
                 pixel *pix2, int i_stride_pix2 ) \
{                                                   \
    int i_sum = 0;                                  \
    for( int y = 0; y < ly; y++ )                   \
    {                                               \
        for( int x = 0; x < lx; x++ )               \
        {                                           \
            int d = pix1[x] - pix2[x];              \
            i_sum += d*d;                           \
        }                                           \
        pix1 += i_stride_pix1;                      \
        pix2 += i_stride_pix2;                      \
    }                                               \
    return i_sum;                                   \
}

PIXEL_SSD_C( x264_pixel_ssd_16x16, 16, 16 )
PIXEL_SSD_C( x264_pixel_ssd_16x8,  16,  8 )
PIXEL_SSD_C( x264_pixel_ssd_8x16,   8, 16 )
PIXEL_SSD_C( x264_pixel_ssd_8x8,    8,  8 )
PIXEL_SSD_C( x264_pixel_ssd_8x4,    8,  4 )
PIXEL_SSD_C( x264_pixel_ssd_4x8,    4,  8 )
PIXEL_SSD_C( x264_pixel_ssd_4x4,    4,  4 )

uint64_t x264_pixel_ssd_wxh( x264_pixel_function_t *pf, pixel *pix1, int i_pix1, pixel *pix2, int i_pix2, int i_width, int i_height )
{
    uint64_t i_ssd = 0;
    int y;
    int align = !(((intptr_t)pix1 | (intptr_t)pix2 | i_pix1 | i_pix2) & 15);

#define SSD(size) i_ssd += pf->ssd[size]( pix1 + y*i_pix1 + x, i_pix1, \
                                          pix2 + y*i_pix2 + x, i_pix2 );
    for( y = 0; y < i_height-15; y += 16 )
    {
        int x = 0;
        if( align )
            for( ; x < i_width-15; x += 16 )
                SSD(PIXEL_16x16);
        for( ; x < i_width-7; x += 8 )
            SSD(PIXEL_8x16);
    }
    if( y < i_height-7 )
        for( int x = 0; x < i_width-7; x += 8 )
            SSD(PIXEL_8x8);
#undef SSD

#define SSD1 { int d = pix1[y*i_pix1+x] - pix2[y*i_pix2+x]; i_ssd += d*d; }
    if( i_width & 7 )
    {
        for( y = 0; y < (i_height & ~7); y++ )
            for( int x = i_width & ~7; x < i_width; x++ )
                SSD1;
    }
    if( i_height & 7 )
    {
        for( y = i_height & ~7; y < i_height; y++ )
            for( int x = 0; x < i_width; x++ )
                SSD1;
    }
#undef SSD1

    return i_ssd;
}

static uint64_t pixel_ssd_nv12_core( pixel *pixuv1, int stride1, pixel *pixuv2, int stride2, int width, int height )
{
    uint32_t ssd_u=0, ssd_v=0;
    for( int y = 0; y < height; y++, pixuv1+=stride1, pixuv2+=stride2 )
        for( int x = 0; x < width; x++ )
        {
            int du = pixuv1[2*x]   - pixuv2[2*x];
            int dv = pixuv1[2*x+1] - pixuv2[2*x+1];
            ssd_u += du*du;
            ssd_v += dv*dv;
        }
    return ssd_u + ((uint64_t)ssd_v<<32);
}

// SSD in uint32 (i.e. packing two into uint64) can potentially overflow on
// image widths >= 11008 (or 6604 if interlaced), since this is called on blocks
// of height up to 12 (resp 20). Though it will probably take significantly more
// than that at sane distortion levels.
uint64_t x264_pixel_ssd_nv12( x264_pixel_function_t *pf, pixel *pix1, int i_pix1, pixel *pix2, int i_pix2, int i_width, int i_height )
{
    uint64_t ssd = pf->ssd_nv12_core( pix1, i_pix1, pix2, i_pix2, i_width&~7, i_height );
    if( i_width&7 )
        ssd += pixel_ssd_nv12_core( pix1+(i_width&~7), i_pix1, pix2+(i_width&~7), i_pix2, i_width&7, i_height );
    return ssd;
}

/****************************************************************************
 * pixel_var_wxh
 ****************************************************************************/
#define PIXEL_VAR_C( name, w ) \
static uint64_t name( pixel *pix, int i_stride ) \
{                                             \
    uint32_t sum = 0, sqr = 0;                \
    for( int y = 0; y < w; y++ )              \
    {                                         \
        for( int x = 0; x < w; x++ )          \
        {                                     \
            sum += pix[x];                    \
            sqr += pix[x] * pix[x];           \
        }                                     \
        pix += i_stride;                      \
    }                                         \
    return sum + ((uint64_t)sqr << 32);       \
}

PIXEL_VAR_C( x264_pixel_var_16x16, 16 )
PIXEL_VAR_C( x264_pixel_var_8x8,    8 )

/****************************************************************************
 * pixel_var2_wxh
 ****************************************************************************/
static int pixel_var2_8x8( pixel *pix1, int i_stride1, pixel *pix2, int i_stride2, int *ssd )
{
    uint32_t var = 0, sum = 0, sqr = 0;
    for( int y = 0; y < 8; y++ )
    {
        for( int x = 0; x < 8; x++ )
        {
            int diff = pix1[x] - pix2[x];
            sum += diff;
            sqr += diff * diff;
        }
        pix1 += i_stride1;
        pix2 += i_stride2;
    }
    sum = abs(sum);
    var = sqr - ((uint64_t)sum * sum >> 6);
    *ssd = sqr;
    return var;
}


#define HADAMARD4(d0, d1, d2, d3, s0, s1, s2, s3) {\
    int t0 = s0 + s1;\
    int t1 = s0 - s1;\
    int t2 = s2 + s3;\
    int t3 = s2 - s3;\
    d0 = t0 + t2;\
    d2 = t0 - t2;\
    d1 = t1 + t3;\
    d3 = t1 - t3;\
}

// in: a pseudo-simd number of the form x+(y<<16)
// return: abs(x)+(abs(y)<<16)
static ALWAYS_INLINE uint32_t abs2( uint32_t a )
{
    uint32_t s = ((a>>15)&0x10001)*0xffff;
    return (a+s)^s;
}

/****************************************************************************
 * pixel_satd_WxH: sum of 4x4 Hadamard transformed differences
 ****************************************************************************/

static NOINLINE int x264_pixel_satd_4x4( pixel *pix1, int i_pix1, pixel *pix2, int i_pix2 )
{
    uint32_t tmp[4][2];
    uint32_t a0, a1, a2, a3, b0, b1;
    int sum = 0;
    for( int i = 0; i < 4; i++, pix1 += i_pix1, pix2 += i_pix2 )
    {
        a0 = pix1[0] - pix2[0];
        a1 = pix1[1] - pix2[1];
        b0 = (a0+a1) + ((a0-a1)<<16);
        a2 = pix1[2] - pix2[2];
        a3 = pix1[3] - pix2[3];
        b1 = (a2+a3) + ((a2-a3)<<16);
        tmp[i][0] = b0 + b1;
        tmp[i][1] = b0 - b1;
    }
    for( int i = 0; i < 2; i++ )
    {
        HADAMARD4( a0, a1, a2, a3, tmp[0][i], tmp[1][i], tmp[2][i], tmp[3][i] );
        a0 = abs2(a0) + abs2(a1) + abs2(a2) + abs2(a3);
        sum += ((uint16_t)a0) + (a0>>16);
    }
    return sum >> 1;
}

static NOINLINE int x264_pixel_satd_8x4( pixel *pix1, int i_pix1, pixel *pix2, int i_pix2 )
{
    uint32_t tmp[4][4];
    uint32_t a0, a1, a2, a3;
    int sum = 0;
    for( int i = 0; i < 4; i++, pix1 += i_pix1, pix2 += i_pix2 )
    {
        a0 = (pix1[0] - pix2[0]) + ((pix1[4] - pix2[4]) << 16);
        a1 = (pix1[1] - pix2[1]) + ((pix1[5] - pix2[5]) << 16);
        a2 = (pix1[2] - pix2[2]) + ((pix1[6] - pix2[6]) << 16);
        a3 = (pix1[3] - pix2[3]) + ((pix1[7] - pix2[7]) << 16);
        HADAMARD4( tmp[i][0], tmp[i][1], tmp[i][2], tmp[i][3], a0,a1,a2,a3 );
    }
    for( int i = 0; i < 4; i++ )
    {
        HADAMARD4( a0, a1, a2, a3, tmp[0][i], tmp[1][i], tmp[2][i], tmp[3][i] );
        sum += abs2(a0) + abs2(a1) + abs2(a2) + abs2(a3);
    }
    return (((uint16_t)sum) + ((uint32_t)sum>>16)) >> 1;
}

#define PIXEL_SATD_C( w, h, sub )\
static int x264_pixel_satd_##w##x##h( pixel *pix1, int i_pix1, pixel *pix2, int i_pix2 )\
{\
    int sum = sub( pix1, i_pix1, pix2, i_pix2 )\
            + sub( pix1+4*i_pix1, i_pix1, pix2+4*i_pix2, i_pix2 );\
    if( w==16 )\
        sum+= sub( pix1+8, i_pix1, pix2+8, i_pix2 )\
            + sub( pix1+8+4*i_pix1, i_pix1, pix2+8+4*i_pix2, i_pix2 );\
    if( h==16 )\
        sum+= sub( pix1+8*i_pix1, i_pix1, pix2+8*i_pix2, i_pix2 )\
            + sub( pix1+12*i_pix1, i_pix1, pix2+12*i_pix2, i_pix2 );\
    if( w==16 && h==16 )\
        sum+= sub( pix1+8+8*i_pix1, i_pix1, pix2+8+8*i_pix2, i_pix2 )\
            + sub( pix1+8+12*i_pix1, i_pix1, pix2+8+12*i_pix2, i_pix2 );\
    return sum;\
}
PIXEL_SATD_C( 16, 16, x264_pixel_satd_8x4 )
PIXEL_SATD_C( 16, 8,  x264_pixel_satd_8x4 )
PIXEL_SATD_C( 8,  16, x264_pixel_satd_8x4 )
PIXEL_SATD_C( 8,  8,  x264_pixel_satd_8x4 )
PIXEL_SATD_C( 4,  8,  x264_pixel_satd_4x4 )


static NOINLINE int sa8d_8x8( pixel *pix1, int i_pix1, pixel *pix2, int i_pix2 )
{
    uint32_t tmp[8][4];
    uint32_t a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3;
    int sum = 0;
    for( int i = 0; i < 8; i++, pix1 += i_pix1, pix2 += i_pix2 )
    {
        a0 = pix1[0] - pix2[0];
        a1 = pix1[1] - pix2[1];
        b0 = (a0+a1) + ((a0-a1)<<16);
        a2 = pix1[2] - pix2[2];
        a3 = pix1[3] - pix2[3];
        b1 = (a2+a3) + ((a2-a3)<<16);
        a4 = pix1[4] - pix2[4];
        a5 = pix1[5] - pix2[5];
        b2 = (a4+a5) + ((a4-a5)<<16);
        a6 = pix1[6] - pix2[6];
        a7 = pix1[7] - pix2[7];
        b3 = (a6+a7) + ((a6-a7)<<16);
        HADAMARD4( tmp[i][0], tmp[i][1], tmp[i][2], tmp[i][3], b0,b1,b2,b3 );
    }
    for( int i = 0; i < 4; i++ )
    {
        HADAMARD4( a0, a1, a2, a3, tmp[0][i], tmp[1][i], tmp[2][i], tmp[3][i] );
        HADAMARD4( a4, a5, a6, a7, tmp[4][i], tmp[5][i], tmp[6][i], tmp[7][i] );
        b0  = abs2(a0+a4) + abs2(a0-a4);
        b0 += abs2(a1+a5) + abs2(a1-a5);
        b0 += abs2(a2+a6) + abs2(a2-a6);
        b0 += abs2(a3+a7) + abs2(a3-a7);
        sum += (uint16_t)b0 + (b0>>16);
    }
    return sum;
}

static int x264_pixel_sa8d_8x8( pixel *pix1, int i_pix1, pixel *pix2, int i_pix2 )
{
    int sum = sa8d_8x8( pix1, i_pix1, pix2, i_pix2 );
    return (sum+2)>>2;
}

static int x264_pixel_sa8d_16x16( pixel *pix1, int i_pix1, pixel *pix2, int i_pix2 )
{
    int sum = sa8d_8x8( pix1, i_pix1, pix2, i_pix2 )
            + sa8d_8x8( pix1+8, i_pix1, pix2+8, i_pix2 )
            + sa8d_8x8( pix1+8*i_pix1, i_pix1, pix2+8*i_pix2, i_pix2 )
            + sa8d_8x8( pix1+8+8*i_pix1, i_pix1, pix2+8+8*i_pix2, i_pix2 );
    return (sum+2)>>2;
}


static NOINLINE uint64_t pixel_hadamard_ac( pixel *pix, int stride )
{
    uint32_t tmp[32];
    uint32_t a0, a1, a2, a3, dc;
    int sum4 = 0, sum8 = 0;
    for( int i = 0; i < 8; i++, pix+=stride )
    {
        uint32_t *t = tmp + (i&3) + (i&4)*4;
        a0 = (pix[0]+pix[1]) + ((pix[0]-pix[1])<<16);
        a1 = (pix[2]+pix[3]) + ((pix[2]-pix[3])<<16);
        t[0] = a0 + a1;
        t[4] = a0 - a1;
        a2 = (pix[4]+pix[5]) + ((pix[4]-pix[5])<<16);
        a3 = (pix[6]+pix[7]) + ((pix[6]-pix[7])<<16);
        t[8] = a2 + a3;
        t[12] = a2 - a3;
    }
    for( int i = 0; i < 8; i++ )
    {
        HADAMARD4( a0, a1, a2, a3, tmp[i*4+0], tmp[i*4+1], tmp[i*4+2], tmp[i*4+3] );
        tmp[i*4+0] = a0;
        tmp[i*4+1] = a1;
        tmp[i*4+2] = a2;
        tmp[i*4+3] = a3;
        sum4 += abs2(a0) + abs2(a1) + abs2(a2) + abs2(a3);
    }
    for( int i = 0; i < 8; i++ )
    {
        HADAMARD4( a0,a1,a2,a3, tmp[i], tmp[8+i], tmp[16+i], tmp[24+i] );
        sum8 += abs2(a0) + abs2(a1) + abs2(a2) + abs2(a3);
    }
    dc = (uint16_t)(tmp[0] + tmp[8] + tmp[16] + tmp[24]);
    sum4 = (uint16_t)sum4 + ((uint32_t)sum4>>16) - dc;
    sum8 = (uint16_t)sum8 + ((uint32_t)sum8>>16) - dc;
    return ((uint64_t)sum8<<32) + sum4;
}

#define HADAMARD_AC(w,h) \
static uint64_t x264_pixel_hadamard_ac_##w##x##h( pixel *pix, int stride )\
{\
    uint64_t sum = pixel_hadamard_ac( pix, stride );\
    if( w==16 )\
        sum += pixel_hadamard_ac( pix+8, stride );\
    if( h==16 )\
        sum += pixel_hadamard_ac( pix+8*stride, stride );\
    if( w==16 && h==16 )\
        sum += pixel_hadamard_ac( pix+8*stride+8, stride );\
    return ((sum>>34)<<32) + ((uint32_t)sum>>1);\
}
HADAMARD_AC( 16, 16 )
HADAMARD_AC( 16, 8 )
HADAMARD_AC( 8, 16 )
HADAMARD_AC( 8, 8 )


/****************************************************************************
 * pixel_sad_x4
 ****************************************************************************/
#define SAD_X( size ) \
static void x264_pixel_sad_x3_##size( pixel *fenc, pixel *pix0, pixel *pix1, pixel *pix2, int i_stride, int scores[3] )\
{\
    scores[0] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix0, i_stride );\
    scores[1] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix1, i_stride );\
    scores[2] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix2, i_stride );\
}\
static void x264_pixel_sad_x4_##size( pixel *fenc, pixel *pix0, pixel *pix1, pixel *pix2, pixel *pix3, int i_stride, int scores[4] )\
{\
    scores[0] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix0, i_stride );\
    scores[1] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix1, i_stride );\
    scores[2] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix2, i_stride );\
    scores[3] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix3, i_stride );\
}

SAD_X( 16x16 )
SAD_X( 16x8 )
SAD_X( 8x16 )
SAD_X( 8x8 )
SAD_X( 8x4 )
SAD_X( 4x8 )
SAD_X( 4x4 )

#if !X264_HIGH_BIT_DEPTH
#if ARCH_UltraSparc
SAD_X( 16x16_vis )
SAD_X( 16x8_vis )
SAD_X( 8x16_vis )
SAD_X( 8x8_vis )
#endif
#endif // !X264_HIGH_BIT_DEPTH

/****************************************************************************
 * pixel_satd_x4
 * no faster than single satd, but needed for satd to be a drop-in replacement for sad
 ****************************************************************************/

#define SATD_X( size, cpu ) \
static void x264_pixel_satd_x3_##size##cpu( pixel *fenc, pixel *pix0, pixel *pix1, pixel *pix2, int i_stride, int scores[3] )\
{\
    scores[0] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix0, i_stride );\
    scores[1] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix1, i_stride );\
    scores[2] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix2, i_stride );\
}\
static void x264_pixel_satd_x4_##size##cpu( pixel *fenc, pixel *pix0, pixel *pix1, pixel *pix2, pixel *pix3, int i_stride, int scores[4] )\
{\
    scores[0] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix0, i_stride );\
    scores[1] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix1, i_stride );\
    scores[2] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix2, i_stride );\
    scores[3] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix3, i_stride );\
}
#define SATD_X_DECL6( cpu )\
SATD_X( 16x16, cpu )\
SATD_X( 16x8, cpu )\
SATD_X( 8x16, cpu )\
SATD_X( 8x8, cpu )\
SATD_X( 8x4, cpu )\
SATD_X( 4x8, cpu )
#define SATD_X_DECL7( cpu )\
SATD_X_DECL6( cpu )\
SATD_X( 4x4, cpu )

SATD_X_DECL7()
#if !X264_HIGH_BIT_DEPTH
#if HAVE_MMX
SATD_X_DECL7( _mmxext )
SATD_X_DECL6( _sse2 )
SATD_X_DECL7( _ssse3 )
SATD_X_DECL7( _sse4 )
#endif

#if HAVE_ARMV6
SATD_X_DECL7( _neon )
#endif
#endif // !X264_HIGH_BIT_DEPTH

#define INTRA_MBCMP_8x8( mbcmp )\
void x264_intra_##mbcmp##_x3_8x8( pixel *fenc, pixel edge[33], int res[3] )\
{\
    pixel pix[8*FDEC_STRIDE];\
    x264_predict_8x8_v_c( pix, edge );\
    res[0] = x264_pixel_##mbcmp##_8x8( pix, FDEC_STRIDE, fenc, FENC_STRIDE );\
    x264_predict_8x8_h_c( pix, edge );\
    res[1] = x264_pixel_##mbcmp##_8x8( pix, FDEC_STRIDE, fenc, FENC_STRIDE );\
    x264_predict_8x8_dc_c( pix, edge );\
    res[2] = x264_pixel_##mbcmp##_8x8( pix, FDEC_STRIDE, fenc, FENC_STRIDE );\
}

INTRA_MBCMP_8x8(sad)
INTRA_MBCMP_8x8(sa8d)

#define INTRA_MBCMP( mbcmp, size, pred1, pred2, pred3, chroma )\
void x264_intra_##mbcmp##_x3_##size##x##size##chroma( pixel *fenc, pixel *fdec, int res[3] )\
{\
    x264_predict_##size##x##size##chroma##_##pred1##_c( fdec );\
    res[0] = x264_pixel_##mbcmp##_##size##x##size( fdec, FDEC_STRIDE, fenc, FENC_STRIDE );\
    x264_predict_##size##x##size##chroma##_##pred2##_c( fdec );\
    res[1] = x264_pixel_##mbcmp##_##size##x##size( fdec, FDEC_STRIDE, fenc, FENC_STRIDE );\
    x264_predict_##size##x##size##chroma##_##pred3##_c( fdec );\
    res[2] = x264_pixel_##mbcmp##_##size##x##size( fdec, FDEC_STRIDE, fenc, FENC_STRIDE );\
}

INTRA_MBCMP(sad, 4, v, h, dc, )
INTRA_MBCMP(satd, 4, v, h, dc, )
INTRA_MBCMP(sad, 8, dc, h, v, c )
INTRA_MBCMP(satd, 8, dc, h, v, c )
INTRA_MBCMP(sad, 16, v, h, dc, )
INTRA_MBCMP(satd, 16, v, h, dc, )

/****************************************************************************
 * structural similarity metric
 ****************************************************************************/
static void ssim_4x4x2_core( const pixel *pix1, int stride1,
                             const pixel *pix2, int stride2,
                             int sums[2][4])
{
    for( int z = 0; z < 2; z++ )
    {
        uint32_t s1 = 0, s2 = 0, ss = 0, s12 = 0;
        for( int y = 0; y < 4; y++ )
            for( int x = 0; x < 4; x++ )
            {
                int a = pix1[x+y*stride1];
                int b = pix2[x+y*stride2];
                s1  += a;
                s2  += b;
                ss  += a*a;
                ss  += b*b;
                s12 += a*b;
            }
        sums[z][0] = s1;
        sums[z][1] = s2;
        sums[z][2] = ss;
        sums[z][3] = s12;
        pix1 += 4;
        pix2 += 4;
    }
}

static float ssim_end1( int s1, int s2, int ss, int s12 )
{
    static const int ssim_c1 = (int)(.01*.01*PIXEL_MAX*PIXEL_MAX*64 + .5);
    static const int ssim_c2 = (int)(.03*.03*PIXEL_MAX*PIXEL_MAX*64*63 + .5);
    int vars = ss*64 - s1*s1 - s2*s2;
    int covar = s12*64 - s1*s2;
    return (float)(2*s1*s2 + ssim_c1) * (float)(2*covar + ssim_c2)
         / ((float)(s1*s1 + s2*s2 + ssim_c1) * (float)(vars + ssim_c2));
}

static float ssim_end4( int sum0[5][4], int sum1[5][4], int width )
{
    float ssim = 0.0;
    for( int i = 0; i < width; i++ )
        ssim += ssim_end1( sum0[i][0] + sum0[i+1][0] + sum1[i][0] + sum1[i+1][0],
                           sum0[i][1] + sum0[i+1][1] + sum1[i][1] + sum1[i+1][1],
                           sum0[i][2] + sum0[i+1][2] + sum1[i][2] + sum1[i+1][2],
                           sum0[i][3] + sum0[i+1][3] + sum1[i][3] + sum1[i+1][3] );
    return ssim;
}

float x264_pixel_ssim_wxh( x264_pixel_function_t *pf,
                           pixel *pix1, int stride1,
                           pixel *pix2, int stride2,
                           int width, int height, void *buf )
{
    int z = 0;
    float ssim = 0.0;
    int (*sum0)[4] = buf;
    int (*sum1)[4] = sum0 + (width >> 2) + 3;
    width >>= 2;
    height >>= 2;
    for( int y = 1; y < height; y++ )
    {
        for( ; z <= y; z++ )
        {
            XCHG( void*, sum0, sum1 );
            for( int x = 0; x < width; x+=2 )
                pf->ssim_4x4x2_core( &pix1[4*(x+z*stride1)], stride1, &pix2[4*(x+z*stride2)], stride2, &sum0[x] );
        }
        for( int x = 0; x < width-1; x += 4 )
            ssim += pf->ssim_end4( sum0+x, sum1+x, X264_MIN(4,width-x-1) );
    }
    return ssim;
}


/****************************************************************************
 * successive elimination
 ****************************************************************************/
static int x264_pixel_ads4( int enc_dc[4], uint16_t *sums, int delta,
                            uint16_t *cost_mvx, int16_t *mvs, int width, int thresh )
{
    int nmv = 0;
    for( int i = 0; i < width; i++, sums++ )
    {
        int ads = abs( enc_dc[0] - sums[0] )
                + abs( enc_dc[1] - sums[8] )
                + abs( enc_dc[2] - sums[delta] )
                + abs( enc_dc[3] - sums[delta+8] )
                + cost_mvx[i];
        if( ads < thresh )
            mvs[nmv++] = i;
    }
    return nmv;
}

static int x264_pixel_ads2( int enc_dc[2], uint16_t *sums, int delta,
                            uint16_t *cost_mvx, int16_t *mvs, int width, int thresh )
{
    int nmv = 0;
    for( int i = 0; i < width; i++, sums++ )
    {
        int ads = abs( enc_dc[0] - sums[0] )
                + abs( enc_dc[1] - sums[delta] )
                + cost_mvx[i];
        if( ads < thresh )
            mvs[nmv++] = i;
    }
    return nmv;
}

static int x264_pixel_ads1( int enc_dc[1], uint16_t *sums, int delta,
                            uint16_t *cost_mvx, int16_t *mvs, int width, int thresh )
{
    int nmv = 0;
    for( int i = 0; i<width; i++, sums++ )
    {
        int ads = abs( enc_dc[0] - sums[0] )
                + cost_mvx[i];
        if( ads < thresh )
            mvs[nmv++] = i;
    }
    return nmv;
}


/****************************************************************************
 * x264_pixel_init:
 ****************************************************************************/
void x264_pixel_init( int cpu, x264_pixel_function_t *pixf )
{
    memset( pixf, 0, sizeof(*pixf) );

#define INIT2_NAME( name1, name2, cpu ) \
    pixf->name1[PIXEL_16x16] = x264_pixel_##name2##_16x16##cpu;\
    pixf->name1[PIXEL_16x8]  = x264_pixel_##name2##_16x8##cpu;
#define INIT4_NAME( name1, name2, cpu ) \
    INIT2_NAME( name1, name2, cpu ) \
    pixf->name1[PIXEL_8x16]  = x264_pixel_##name2##_8x16##cpu;\
    pixf->name1[PIXEL_8x8]   = x264_pixel_##name2##_8x8##cpu;
#define INIT5_NAME( name1, name2, cpu ) \
    INIT4_NAME( name1, name2, cpu ) \
    pixf->name1[PIXEL_8x4]   = x264_pixel_##name2##_8x4##cpu;
#define INIT6_NAME( name1, name2, cpu ) \
    INIT5_NAME( name1, name2, cpu ) \
    pixf->name1[PIXEL_4x8]   = x264_pixel_##name2##_4x8##cpu;
#define INIT7_NAME( name1, name2, cpu ) \
    INIT6_NAME( name1, name2, cpu ) \
    pixf->name1[PIXEL_4x4]   = x264_pixel_##name2##_4x4##cpu;
#define INIT2( name, cpu ) INIT2_NAME( name, name, cpu )
#define INIT4( name, cpu ) INIT4_NAME( name, name, cpu )
#define INIT5( name, cpu ) INIT5_NAME( name, name, cpu )
#define INIT6( name, cpu ) INIT6_NAME( name, name, cpu )
#define INIT7( name, cpu ) INIT7_NAME( name, name, cpu )

#define INIT_ADS( cpu ) \
    pixf->ads[PIXEL_16x16] = x264_pixel_ads4##cpu;\
    pixf->ads[PIXEL_16x8] = x264_pixel_ads2##cpu;\
    pixf->ads[PIXEL_8x8] = x264_pixel_ads1##cpu;

    INIT7( sad, );
    INIT7_NAME( sad_aligned, sad, );
    INIT7( sad_x3, );
    INIT7( sad_x4, );
    INIT7( ssd, );
    INIT7( satd, );
    INIT7( satd_x3, );
    INIT7( satd_x4, );
    INIT4( hadamard_ac, );
    INIT_ADS( );

    pixf->sa8d[PIXEL_16x16] = x264_pixel_sa8d_16x16;
    pixf->sa8d[PIXEL_8x8]   = x264_pixel_sa8d_8x8;
    pixf->var[PIXEL_16x16] = x264_pixel_var_16x16;
    pixf->var[PIXEL_8x8]   = x264_pixel_var_8x8;

    pixf->ssd_nv12_core = pixel_ssd_nv12_core;
    pixf->ssim_4x4x2_core = ssim_4x4x2_core;
    pixf->ssim_end4 = ssim_end4;
    pixf->var2_8x8 = pixel_var2_8x8;

    pixf->intra_sad_x3_4x4    = x264_intra_sad_x3_4x4;
    pixf->intra_satd_x3_4x4   = x264_intra_satd_x3_4x4;
    pixf->intra_sad_x3_8x8    = x264_intra_sad_x3_8x8;
    pixf->intra_sa8d_x3_8x8   = x264_intra_sa8d_x3_8x8;
    pixf->intra_sad_x3_8x8c   = x264_intra_sad_x3_8x8c;
    pixf->intra_satd_x3_8x8c  = x264_intra_satd_x3_8x8c;
    pixf->intra_sad_x3_16x16  = x264_intra_sad_x3_16x16;
    pixf->intra_satd_x3_16x16 = x264_intra_satd_x3_16x16;

#if !X264_HIGH_BIT_DEPTH
#if HAVE_MMX
    if( cpu&X264_CPU_MMX )
    {
        INIT7( ssd, _mmx );
    }

    if( cpu&X264_CPU_MMXEXT )
    {
        INIT7( sad, _mmxext );
        INIT7_NAME( sad_aligned, sad, _mmxext );
        INIT7( sad_x3, _mmxext );
        INIT7( sad_x4, _mmxext );
        INIT7( satd, _mmxext );
        INIT7( satd_x3, _mmxext );
        INIT7( satd_x4, _mmxext );
        INIT4( hadamard_ac, _mmxext );
        INIT_ADS( _mmxext );
        pixf->var[PIXEL_16x16] = x264_pixel_var_16x16_mmxext;
        pixf->var[PIXEL_8x8]   = x264_pixel_var_8x8_mmxext;
        pixf->ssd_nv12_core    = x264_pixel_ssd_nv12_core_mmxext;
#if ARCH_X86
        pixf->sa8d[PIXEL_16x16] = x264_pixel_sa8d_16x16_mmxext;
        pixf->sa8d[PIXEL_8x8]   = x264_pixel_sa8d_8x8_mmxext;
        pixf->intra_sa8d_x3_8x8 = x264_intra_sa8d_x3_8x8_mmxext;
        pixf->ssim_4x4x2_core  = x264_pixel_ssim_4x4x2_core_mmxext;
        pixf->var2_8x8 = x264_pixel_var2_8x8_mmxext;

        if( cpu&X264_CPU_CACHELINE_32 )
        {
            INIT5( sad, _cache32_mmxext );
            INIT4( sad_x3, _cache32_mmxext );
            INIT4( sad_x4, _cache32_mmxext );
        }
        else if( cpu&X264_CPU_CACHELINE_64 )
        {
            INIT5( sad, _cache64_mmxext );
            INIT4( sad_x3, _cache64_mmxext );
            INIT4( sad_x4, _cache64_mmxext );
        }
#else
        if( cpu&X264_CPU_CACHELINE_64 )
        {
            pixf->sad[PIXEL_8x16] = x264_pixel_sad_8x16_cache64_mmxext;
            pixf->sad[PIXEL_8x8]  = x264_pixel_sad_8x8_cache64_mmxext;
            pixf->sad[PIXEL_8x4]  = x264_pixel_sad_8x4_cache64_mmxext;
            pixf->sad_x3[PIXEL_8x16] = x264_pixel_sad_x3_8x16_cache64_mmxext;
            pixf->sad_x3[PIXEL_8x8]  = x264_pixel_sad_x3_8x8_cache64_mmxext;
            pixf->sad_x4[PIXEL_8x16] = x264_pixel_sad_x4_8x16_cache64_mmxext;
            pixf->sad_x4[PIXEL_8x8]  = x264_pixel_sad_x4_8x8_cache64_mmxext;
        }
#endif
        pixf->intra_satd_x3_16x16 = x264_intra_satd_x3_16x16_mmxext;
        pixf->intra_sad_x3_16x16  = x264_intra_sad_x3_16x16_mmxext;
        pixf->intra_satd_x3_8x8c  = x264_intra_satd_x3_8x8c_mmxext;
        pixf->intra_sad_x3_8x8c   = x264_intra_sad_x3_8x8c_mmxext;
        pixf->intra_sad_x3_8x8    = x264_intra_sad_x3_8x8_mmxext;
        pixf->intra_satd_x3_4x4   = x264_intra_satd_x3_4x4_mmxext;
        pixf->intra_sad_x3_4x4    = x264_intra_sad_x3_4x4_mmxext;
    }

    if( cpu&X264_CPU_SSE2 )
    {
        INIT5( ssd, _sse2slow );
        INIT2_NAME( sad_aligned, sad, _sse2_aligned );
        pixf->var[PIXEL_16x16] = x264_pixel_var_16x16_sse2;
        pixf->ssd_nv12_core    = x264_pixel_ssd_nv12_core_sse2;
        pixf->ssim_4x4x2_core  = x264_pixel_ssim_4x4x2_core_sse2;
        pixf->ssim_end4        = x264_pixel_ssim_end4_sse2;
        pixf->sa8d[PIXEL_16x16] = x264_pixel_sa8d_16x16_sse2;
        pixf->sa8d[PIXEL_8x8]   = x264_pixel_sa8d_8x8_sse2;
#if ARCH_X86_64
        pixf->intra_sa8d_x3_8x8 = x264_intra_sa8d_x3_8x8_sse2;
#endif
        pixf->var2_8x8 = x264_pixel_var2_8x8_sse2;
    }

    if( (cpu&X264_CPU_SSE2) && !(cpu&X264_CPU_SSE2_IS_SLOW) )
    {
        INIT2( sad, _sse2 );
        INIT2( sad_x3, _sse2 );
        INIT2( sad_x4, _sse2 );
        INIT6( satd, _sse2 );
        INIT6( satd_x3, _sse2 );
        INIT6( satd_x4, _sse2 );
        if( !(cpu&X264_CPU_STACK_MOD4) )
        {
            INIT4( hadamard_ac, _sse2 );
        }
        INIT_ADS( _sse2 );
        pixf->var[PIXEL_8x8] = x264_pixel_var_8x8_sse2;
        pixf->intra_sad_x3_16x16 = x264_intra_sad_x3_16x16_sse2;
        if( cpu&X264_CPU_CACHELINE_64 )
        {
            INIT2( ssd, _sse2); /* faster for width 16 on p4 */
#if ARCH_X86
            INIT2( sad, _cache64_sse2 );
            INIT2( sad_x3, _cache64_sse2 );
            INIT2( sad_x4, _cache64_sse2 );
#endif
           if( cpu&X264_CPU_SSE2_IS_FAST )
           {
               pixf->sad_x3[PIXEL_8x16] = x264_pixel_sad_x3_8x16_cache64_sse2;
               pixf->sad_x4[PIXEL_8x16] = x264_pixel_sad_x4_8x16_cache64_sse2;
           }
        }

        if( cpu&X264_CPU_SSE_MISALIGN )
        {
            INIT2( sad_x3, _sse2_misalign );
            INIT2( sad_x4, _sse2_misalign );
        }
    }

    if( cpu&X264_CPU_SSE2_IS_FAST && !(cpu&X264_CPU_CACHELINE_64) )
    {
        pixf->sad_aligned[PIXEL_8x16] = x264_pixel_sad_8x16_sse2;
        pixf->sad[PIXEL_8x16] = x264_pixel_sad_8x16_sse2;
        pixf->sad_x3[PIXEL_8x16] = x264_pixel_sad_x3_8x16_sse2;
        pixf->sad_x3[PIXEL_8x8] = x264_pixel_sad_x3_8x8_sse2;
        pixf->sad_x3[PIXEL_8x4] = x264_pixel_sad_x3_8x4_sse2;
        pixf->sad_x4[PIXEL_8x16] = x264_pixel_sad_x4_8x16_sse2;
        pixf->sad_x4[PIXEL_8x8] = x264_pixel_sad_x4_8x8_sse2;
        pixf->sad_x4[PIXEL_8x4] = x264_pixel_sad_x4_8x4_sse2;
    }

    if( (cpu&X264_CPU_SSE3) && (cpu&X264_CPU_CACHELINE_64) )
    {
        INIT2( sad, _sse3 );
        INIT2( sad_x3, _sse3 );
        INIT2( sad_x4, _sse3 );
    }

    if( cpu&X264_CPU_SSSE3 )
    {
        if( !(cpu&X264_CPU_STACK_MOD4) )
        {
            INIT4( hadamard_ac, _ssse3 );
        }
        INIT_ADS( _ssse3 );
        if( !(cpu&X264_CPU_SLOW_ATOM) )
        {
            INIT7( ssd, _ssse3 );
            pixf->sa8d[PIXEL_16x16]= x264_pixel_sa8d_16x16_ssse3;
            pixf->sa8d[PIXEL_8x8]  = x264_pixel_sa8d_8x8_ssse3;
            INIT7( satd, _ssse3 );
            INIT7( satd_x3, _ssse3 );
            INIT7( satd_x4, _ssse3 );
        }
        pixf->intra_satd_x3_16x16 = x264_intra_satd_x3_16x16_ssse3;
        pixf->intra_sad_x3_16x16  = x264_intra_sad_x3_16x16_ssse3;
        pixf->intra_satd_x3_8x8c  = x264_intra_satd_x3_8x8c_ssse3;
        pixf->intra_sad_x3_8x8c   = x264_intra_sad_x3_8x8c_ssse3;
        pixf->intra_satd_x3_4x4   = x264_intra_satd_x3_4x4_ssse3;
#if ARCH_X86_64
        pixf->intra_sa8d_x3_8x8 = x264_intra_sa8d_x3_8x8_ssse3;
#endif
        pixf->var2_8x8 = x264_pixel_var2_8x8_ssse3;
        if( cpu&X264_CPU_CACHELINE_64 )
        {
            INIT2( sad, _cache64_ssse3 );
            INIT2( sad_x3, _cache64_ssse3 );
            INIT2( sad_x4, _cache64_ssse3 );
        }
        if( cpu&X264_CPU_SLOW_ATOM || !(cpu&X264_CPU_SHUFFLE_IS_FAST) )
        {
            INIT5( ssd, _sse2 ); /* on conroe, sse2 is faster for width8/16 */
        }
    }

    if( cpu&X264_CPU_SSE4 )
    {
        INIT7( satd, _sse4 );
        INIT7( satd_x3, _sse4 );
        INIT7( satd_x4, _sse4 );
        if( !(cpu&X264_CPU_STACK_MOD4) )
        {
            INIT4( hadamard_ac, _sse4 );
        }
        pixf->sa8d[PIXEL_16x16]= x264_pixel_sa8d_16x16_sse4;
        pixf->sa8d[PIXEL_8x8]  = x264_pixel_sa8d_8x8_sse4;
        pixf->intra_sad_x3_4x4 = x264_intra_sad_x3_4x4_sse4;
        /* Slower on Conroe, so only enable under SSE4 */
        pixf->intra_sad_x3_8x8  = x264_intra_sad_x3_8x8_ssse3;
    }
#endif //HAVE_MMX

#if HAVE_ARMV6
    if( cpu&X264_CPU_ARMV6 )
    {
        pixf->sad[PIXEL_4x8] = x264_pixel_sad_4x8_armv6;
        pixf->sad[PIXEL_4x4] = x264_pixel_sad_4x4_armv6;
        pixf->sad_aligned[PIXEL_4x8] = x264_pixel_sad_4x8_armv6;
        pixf->sad_aligned[PIXEL_4x4] = x264_pixel_sad_4x4_armv6;
    }
    if( cpu&X264_CPU_NEON )
    {
        INIT5( sad, _neon );
        INIT5( sad_aligned, _neon );
        INIT7( sad_x3, _neon );
        INIT7( sad_x4, _neon );
        INIT7( ssd, _neon );
        INIT7( satd, _neon );
        INIT7( satd_x3, _neon );
        INIT7( satd_x4, _neon );
        INIT4( hadamard_ac, _neon );
        pixf->sa8d[PIXEL_8x8]   = x264_pixel_sa8d_8x8_neon;
        pixf->sa8d[PIXEL_16x16] = x264_pixel_sa8d_16x16_neon;
        pixf->var[PIXEL_8x8]    = x264_pixel_var_8x8_neon;
        pixf->var[PIXEL_16x16]  = x264_pixel_var_16x16_neon;
        pixf->var2_8x8          = x264_pixel_var2_8x8_neon;

        pixf->ssim_4x4x2_core   = x264_pixel_ssim_4x4x2_core_neon;
        pixf->ssim_end4         = x264_pixel_ssim_end4_neon;

        if( cpu&X264_CPU_FAST_NEON_MRC )
        {
            pixf->sad[PIXEL_4x8] = x264_pixel_sad_4x8_neon;
            pixf->sad[PIXEL_4x4] = x264_pixel_sad_4x4_neon;
            pixf->sad_aligned[PIXEL_4x8] = x264_pixel_sad_aligned_4x8_neon;
            pixf->sad_aligned[PIXEL_4x4] = x264_pixel_sad_aligned_4x4_neon;
        }
        else    // really just scheduled for dual issue / A8
        {
            INIT5( sad_aligned, _neon_dual );
        }
    }
#endif
#endif // !X264_HIGH_BIT_DEPTH
#if HAVE_ALTIVEC
    if( cpu&X264_CPU_ALTIVEC )
    {
        x264_pixel_altivec_init( pixf );
    }
#endif
#if !X264_HIGH_BIT_DEPTH
#if ARCH_UltraSparc
    INIT4( sad, _vis );
    INIT4( sad_x3, _vis );
    INIT4( sad_x4, _vis );
#endif
#endif // !X264_HIGH_BIT_DEPTH

    pixf->ads[PIXEL_8x16] =
    pixf->ads[PIXEL_8x4] =
    pixf->ads[PIXEL_4x8] = pixf->ads[PIXEL_16x8];
    pixf->ads[PIXEL_4x4] = pixf->ads[PIXEL_8x8];
}


Generated by  Doxygen 1.6.0   Back to index